(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
q0(a(x1)) → x(q1(x1))
q1(a(x1)) → a(q1(x1))
q1(y(x1)) → y(q1(x1))
a(q1(b(x1))) → q2(a(y(x1)))
a(q2(a(x1))) → q2(a(a(x1)))
a(q2(y(x1))) → q2(a(y(x1)))
y(q1(b(x1))) → q2(y(y(x1)))
y(q2(a(x1))) → q2(y(a(x1)))
y(q2(y(x1))) → q2(y(y(x1)))
q2(x(x1)) → x(q0(x1))
q0(y(x1)) → y(q3(x1))
q3(y(x1)) → y(q3(x1))
q3(bl(x1)) → bl(q4(x1))
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
q0(a(z0)) → x(q1(z0))
q0(y(z0)) → y(q3(z0))
q1(a(z0)) → a(q1(z0))
q1(y(z0)) → y(q1(z0))
a(q1(b(z0))) → q2(a(y(z0)))
a(q2(a(z0))) → q2(a(a(z0)))
a(q2(y(z0))) → q2(a(y(z0)))
y(q1(b(z0))) → q2(y(y(z0)))
y(q2(a(z0))) → q2(y(a(z0)))
y(q2(y(z0))) → q2(y(y(z0)))
q2(x(z0)) → x(q0(z0))
q3(y(z0)) → y(q3(z0))
q3(bl(z0)) → bl(q4(z0))
Tuples:
Q0(a(z0)) → c(Q1(z0))
Q0(y(z0)) → c1(Y(q3(z0)), Q3(z0))
Q1(a(z0)) → c2(A(q1(z0)), Q1(z0))
Q1(y(z0)) → c3(Y(q1(z0)), Q1(z0))
A(q1(b(z0))) → c4(Q2(a(y(z0))), A(y(z0)), Y(z0))
A(q2(a(z0))) → c5(Q2(a(a(z0))), A(a(z0)), A(z0))
A(q2(y(z0))) → c6(Q2(a(y(z0))), A(y(z0)), Y(z0))
Y(q1(b(z0))) → c7(Q2(y(y(z0))), Y(y(z0)), Y(z0))
Y(q2(a(z0))) → c8(Q2(y(a(z0))), Y(a(z0)), A(z0))
Y(q2(y(z0))) → c9(Q2(y(y(z0))), Y(y(z0)), Y(z0))
Q2(x(z0)) → c10(Q0(z0))
Q3(y(z0)) → c11(Y(q3(z0)), Q3(z0))
S tuples:
Q0(a(z0)) → c(Q1(z0))
Q0(y(z0)) → c1(Y(q3(z0)), Q3(z0))
Q1(a(z0)) → c2(A(q1(z0)), Q1(z0))
Q1(y(z0)) → c3(Y(q1(z0)), Q1(z0))
A(q1(b(z0))) → c4(Q2(a(y(z0))), A(y(z0)), Y(z0))
A(q2(a(z0))) → c5(Q2(a(a(z0))), A(a(z0)), A(z0))
A(q2(y(z0))) → c6(Q2(a(y(z0))), A(y(z0)), Y(z0))
Y(q1(b(z0))) → c7(Q2(y(y(z0))), Y(y(z0)), Y(z0))
Y(q2(a(z0))) → c8(Q2(y(a(z0))), Y(a(z0)), A(z0))
Y(q2(y(z0))) → c9(Q2(y(y(z0))), Y(y(z0)), Y(z0))
Q2(x(z0)) → c10(Q0(z0))
Q3(y(z0)) → c11(Y(q3(z0)), Q3(z0))
K tuples:none
Defined Rule Symbols:
q0, q1, a, y, q2, q3
Defined Pair Symbols:
Q0, Q1, A, Y, Q2, Q3
Compound Symbols:
c, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11
(3) CdtGraphRemoveTrailingProof (BOTH BOUNDS(ID, ID) transformation)
Removed 8 trailing tuple parts
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
q0(a(z0)) → x(q1(z0))
q0(y(z0)) → y(q3(z0))
q1(a(z0)) → a(q1(z0))
q1(y(z0)) → y(q1(z0))
a(q1(b(z0))) → q2(a(y(z0)))
a(q2(a(z0))) → q2(a(a(z0)))
a(q2(y(z0))) → q2(a(y(z0)))
y(q1(b(z0))) → q2(y(y(z0)))
y(q2(a(z0))) → q2(y(a(z0)))
y(q2(y(z0))) → q2(y(y(z0)))
q2(x(z0)) → x(q0(z0))
q3(y(z0)) → y(q3(z0))
q3(bl(z0)) → bl(q4(z0))
Tuples:
Q0(a(z0)) → c(Q1(z0))
Q0(y(z0)) → c1(Y(q3(z0)), Q3(z0))
Q1(a(z0)) → c2(A(q1(z0)), Q1(z0))
Q1(y(z0)) → c3(Y(q1(z0)), Q1(z0))
A(q1(b(z0))) → c4(Q2(a(y(z0))), A(y(z0)), Y(z0))
Y(q1(b(z0))) → c7(Q2(y(y(z0))), Y(y(z0)), Y(z0))
Q2(x(z0)) → c10(Q0(z0))
Q3(y(z0)) → c11(Y(q3(z0)), Q3(z0))
A(q2(a(z0))) → c5(A(z0))
A(q2(y(z0))) → c6(Y(z0))
Y(q2(a(z0))) → c8(A(z0))
Y(q2(y(z0))) → c9(Y(z0))
S tuples:
Q0(a(z0)) → c(Q1(z0))
Q0(y(z0)) → c1(Y(q3(z0)), Q3(z0))
Q1(a(z0)) → c2(A(q1(z0)), Q1(z0))
Q1(y(z0)) → c3(Y(q1(z0)), Q1(z0))
A(q1(b(z0))) → c4(Q2(a(y(z0))), A(y(z0)), Y(z0))
Y(q1(b(z0))) → c7(Q2(y(y(z0))), Y(y(z0)), Y(z0))
Q2(x(z0)) → c10(Q0(z0))
Q3(y(z0)) → c11(Y(q3(z0)), Q3(z0))
A(q2(a(z0))) → c5(A(z0))
A(q2(y(z0))) → c6(Y(z0))
Y(q2(a(z0))) → c8(A(z0))
Y(q2(y(z0))) → c9(Y(z0))
K tuples:none
Defined Rule Symbols:
q0, q1, a, y, q2, q3
Defined Pair Symbols:
Q0, Q1, A, Y, Q2, Q3
Compound Symbols:
c, c1, c2, c3, c4, c7, c10, c11, c5, c6, c8, c9
(5) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
Q0(y(z0)) → c1(Y(q3(z0)), Q3(z0))
We considered the (Usable) Rules:
q3(y(z0)) → y(q3(z0))
q3(bl(z0)) → bl(q4(z0))
y(q1(b(z0))) → q2(y(y(z0)))
y(q2(a(z0))) → q2(y(a(z0)))
y(q2(y(z0))) → q2(y(y(z0)))
q2(x(z0)) → x(q0(z0))
q0(a(z0)) → x(q1(z0))
q0(y(z0)) → y(q3(z0))
q1(a(z0)) → a(q1(z0))
q1(y(z0)) → y(q1(z0))
a(q1(b(z0))) → q2(a(y(z0)))
a(q2(a(z0))) → q2(a(a(z0)))
a(q2(y(z0))) → q2(a(y(z0)))
And the Tuples:
Q0(a(z0)) → c(Q1(z0))
Q0(y(z0)) → c1(Y(q3(z0)), Q3(z0))
Q1(a(z0)) → c2(A(q1(z0)), Q1(z0))
Q1(y(z0)) → c3(Y(q1(z0)), Q1(z0))
A(q1(b(z0))) → c4(Q2(a(y(z0))), A(y(z0)), Y(z0))
Y(q1(b(z0))) → c7(Q2(y(y(z0))), Y(y(z0)), Y(z0))
Q2(x(z0)) → c10(Q0(z0))
Q3(y(z0)) → c11(Y(q3(z0)), Q3(z0))
A(q2(a(z0))) → c5(A(z0))
A(q2(y(z0))) → c6(Y(z0))
Y(q2(a(z0))) → c8(A(z0))
Y(q2(y(z0))) → c9(Y(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(A(x1)) = 0
POL(Q0(x1)) = [4]
POL(Q1(x1)) = 0
POL(Q2(x1)) = [4]x1
POL(Q3(x1)) = 0
POL(Y(x1)) = 0
POL(a(x1)) = 0
POL(b(x1)) = [4]
POL(bl(x1)) = 0
POL(c(x1)) = x1
POL(c1(x1, x2)) = x1 + x2
POL(c10(x1)) = x1
POL(c11(x1, x2)) = x1 + x2
POL(c2(x1, x2)) = x1 + x2
POL(c3(x1, x2)) = x1 + x2
POL(c4(x1, x2, x3)) = x1 + x2 + x3
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(c7(x1, x2, x3)) = x1 + x2 + x3
POL(c8(x1)) = x1
POL(c9(x1)) = x1
POL(q0(x1)) = [5] + [2]x1
POL(q1(x1)) = [2]
POL(q2(x1)) = [4]x1
POL(q3(x1)) = [3] + [5]x1
POL(q4(x1)) = [3]
POL(x(x1)) = [1]
POL(y(x1)) = 0
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
q0(a(z0)) → x(q1(z0))
q0(y(z0)) → y(q3(z0))
q1(a(z0)) → a(q1(z0))
q1(y(z0)) → y(q1(z0))
a(q1(b(z0))) → q2(a(y(z0)))
a(q2(a(z0))) → q2(a(a(z0)))
a(q2(y(z0))) → q2(a(y(z0)))
y(q1(b(z0))) → q2(y(y(z0)))
y(q2(a(z0))) → q2(y(a(z0)))
y(q2(y(z0))) → q2(y(y(z0)))
q2(x(z0)) → x(q0(z0))
q3(y(z0)) → y(q3(z0))
q3(bl(z0)) → bl(q4(z0))
Tuples:
Q0(a(z0)) → c(Q1(z0))
Q0(y(z0)) → c1(Y(q3(z0)), Q3(z0))
Q1(a(z0)) → c2(A(q1(z0)), Q1(z0))
Q1(y(z0)) → c3(Y(q1(z0)), Q1(z0))
A(q1(b(z0))) → c4(Q2(a(y(z0))), A(y(z0)), Y(z0))
Y(q1(b(z0))) → c7(Q2(y(y(z0))), Y(y(z0)), Y(z0))
Q2(x(z0)) → c10(Q0(z0))
Q3(y(z0)) → c11(Y(q3(z0)), Q3(z0))
A(q2(a(z0))) → c5(A(z0))
A(q2(y(z0))) → c6(Y(z0))
Y(q2(a(z0))) → c8(A(z0))
Y(q2(y(z0))) → c9(Y(z0))
S tuples:
Q0(a(z0)) → c(Q1(z0))
Q1(a(z0)) → c2(A(q1(z0)), Q1(z0))
Q1(y(z0)) → c3(Y(q1(z0)), Q1(z0))
A(q1(b(z0))) → c4(Q2(a(y(z0))), A(y(z0)), Y(z0))
Y(q1(b(z0))) → c7(Q2(y(y(z0))), Y(y(z0)), Y(z0))
Q2(x(z0)) → c10(Q0(z0))
Q3(y(z0)) → c11(Y(q3(z0)), Q3(z0))
A(q2(a(z0))) → c5(A(z0))
A(q2(y(z0))) → c6(Y(z0))
Y(q2(a(z0))) → c8(A(z0))
Y(q2(y(z0))) → c9(Y(z0))
K tuples:
Q0(y(z0)) → c1(Y(q3(z0)), Q3(z0))
Defined Rule Symbols:
q0, q1, a, y, q2, q3
Defined Pair Symbols:
Q0, Q1, A, Y, Q2, Q3
Compound Symbols:
c, c1, c2, c3, c4, c7, c10, c11, c5, c6, c8, c9
(7) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
Q2(x(z0)) → c10(Q0(z0))
We considered the (Usable) Rules:
q3(y(z0)) → y(q3(z0))
q3(bl(z0)) → bl(q4(z0))
y(q1(b(z0))) → q2(y(y(z0)))
y(q2(a(z0))) → q2(y(a(z0)))
y(q2(y(z0))) → q2(y(y(z0)))
q2(x(z0)) → x(q0(z0))
q0(a(z0)) → x(q1(z0))
q0(y(z0)) → y(q3(z0))
q1(a(z0)) → a(q1(z0))
q1(y(z0)) → y(q1(z0))
a(q1(b(z0))) → q2(a(y(z0)))
a(q2(a(z0))) → q2(a(a(z0)))
a(q2(y(z0))) → q2(a(y(z0)))
And the Tuples:
Q0(a(z0)) → c(Q1(z0))
Q0(y(z0)) → c1(Y(q3(z0)), Q3(z0))
Q1(a(z0)) → c2(A(q1(z0)), Q1(z0))
Q1(y(z0)) → c3(Y(q1(z0)), Q1(z0))
A(q1(b(z0))) → c4(Q2(a(y(z0))), A(y(z0)), Y(z0))
Y(q1(b(z0))) → c7(Q2(y(y(z0))), Y(y(z0)), Y(z0))
Q2(x(z0)) → c10(Q0(z0))
Q3(y(z0)) → c11(Y(q3(z0)), Q3(z0))
A(q2(a(z0))) → c5(A(z0))
A(q2(y(z0))) → c6(Y(z0))
Y(q2(a(z0))) → c8(A(z0))
Y(q2(y(z0))) → c9(Y(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(A(x1)) = 0
POL(Q0(x1)) = [2]
POL(Q1(x1)) = 0
POL(Q2(x1)) = [4]x1
POL(Q3(x1)) = [1]
POL(Y(x1)) = 0
POL(a(x1)) = 0
POL(b(x1)) = 0
POL(bl(x1)) = [3]
POL(c(x1)) = x1
POL(c1(x1, x2)) = x1 + x2
POL(c10(x1)) = x1
POL(c11(x1, x2)) = x1 + x2
POL(c2(x1, x2)) = x1 + x2
POL(c3(x1, x2)) = x1 + x2
POL(c4(x1, x2, x3)) = x1 + x2 + x3
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(c7(x1, x2, x3)) = x1 + x2 + x3
POL(c8(x1)) = x1
POL(c9(x1)) = x1
POL(q0(x1)) = [4]
POL(q1(x1)) = 0
POL(q2(x1)) = [4]x1
POL(q3(x1)) = [4] + [5]x1
POL(q4(x1)) = [3]
POL(x(x1)) = [1]
POL(y(x1)) = 0
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
q0(a(z0)) → x(q1(z0))
q0(y(z0)) → y(q3(z0))
q1(a(z0)) → a(q1(z0))
q1(y(z0)) → y(q1(z0))
a(q1(b(z0))) → q2(a(y(z0)))
a(q2(a(z0))) → q2(a(a(z0)))
a(q2(y(z0))) → q2(a(y(z0)))
y(q1(b(z0))) → q2(y(y(z0)))
y(q2(a(z0))) → q2(y(a(z0)))
y(q2(y(z0))) → q2(y(y(z0)))
q2(x(z0)) → x(q0(z0))
q3(y(z0)) → y(q3(z0))
q3(bl(z0)) → bl(q4(z0))
Tuples:
Q0(a(z0)) → c(Q1(z0))
Q0(y(z0)) → c1(Y(q3(z0)), Q3(z0))
Q1(a(z0)) → c2(A(q1(z0)), Q1(z0))
Q1(y(z0)) → c3(Y(q1(z0)), Q1(z0))
A(q1(b(z0))) → c4(Q2(a(y(z0))), A(y(z0)), Y(z0))
Y(q1(b(z0))) → c7(Q2(y(y(z0))), Y(y(z0)), Y(z0))
Q2(x(z0)) → c10(Q0(z0))
Q3(y(z0)) → c11(Y(q3(z0)), Q3(z0))
A(q2(a(z0))) → c5(A(z0))
A(q2(y(z0))) → c6(Y(z0))
Y(q2(a(z0))) → c8(A(z0))
Y(q2(y(z0))) → c9(Y(z0))
S tuples:
Q0(a(z0)) → c(Q1(z0))
Q1(a(z0)) → c2(A(q1(z0)), Q1(z0))
Q1(y(z0)) → c3(Y(q1(z0)), Q1(z0))
A(q1(b(z0))) → c4(Q2(a(y(z0))), A(y(z0)), Y(z0))
Y(q1(b(z0))) → c7(Q2(y(y(z0))), Y(y(z0)), Y(z0))
Q3(y(z0)) → c11(Y(q3(z0)), Q3(z0))
A(q2(a(z0))) → c5(A(z0))
A(q2(y(z0))) → c6(Y(z0))
Y(q2(a(z0))) → c8(A(z0))
Y(q2(y(z0))) → c9(Y(z0))
K tuples:
Q0(y(z0)) → c1(Y(q3(z0)), Q3(z0))
Q2(x(z0)) → c10(Q0(z0))
Defined Rule Symbols:
q0, q1, a, y, q2, q3
Defined Pair Symbols:
Q0, Q1, A, Y, Q2, Q3
Compound Symbols:
c, c1, c2, c3, c4, c7, c10, c11, c5, c6, c8, c9
(9) CdtKnowledgeProof (EQUIVALENT transformation)
The following tuples could be moved from S to K by knowledge propagation:
Q0(a(z0)) → c(Q1(z0))
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
q0(a(z0)) → x(q1(z0))
q0(y(z0)) → y(q3(z0))
q1(a(z0)) → a(q1(z0))
q1(y(z0)) → y(q1(z0))
a(q1(b(z0))) → q2(a(y(z0)))
a(q2(a(z0))) → q2(a(a(z0)))
a(q2(y(z0))) → q2(a(y(z0)))
y(q1(b(z0))) → q2(y(y(z0)))
y(q2(a(z0))) → q2(y(a(z0)))
y(q2(y(z0))) → q2(y(y(z0)))
q2(x(z0)) → x(q0(z0))
q3(y(z0)) → y(q3(z0))
q3(bl(z0)) → bl(q4(z0))
Tuples:
Q0(a(z0)) → c(Q1(z0))
Q0(y(z0)) → c1(Y(q3(z0)), Q3(z0))
Q1(a(z0)) → c2(A(q1(z0)), Q1(z0))
Q1(y(z0)) → c3(Y(q1(z0)), Q1(z0))
A(q1(b(z0))) → c4(Q2(a(y(z0))), A(y(z0)), Y(z0))
Y(q1(b(z0))) → c7(Q2(y(y(z0))), Y(y(z0)), Y(z0))
Q2(x(z0)) → c10(Q0(z0))
Q3(y(z0)) → c11(Y(q3(z0)), Q3(z0))
A(q2(a(z0))) → c5(A(z0))
A(q2(y(z0))) → c6(Y(z0))
Y(q2(a(z0))) → c8(A(z0))
Y(q2(y(z0))) → c9(Y(z0))
S tuples:
Q1(a(z0)) → c2(A(q1(z0)), Q1(z0))
Q1(y(z0)) → c3(Y(q1(z0)), Q1(z0))
A(q1(b(z0))) → c4(Q2(a(y(z0))), A(y(z0)), Y(z0))
Y(q1(b(z0))) → c7(Q2(y(y(z0))), Y(y(z0)), Y(z0))
Q3(y(z0)) → c11(Y(q3(z0)), Q3(z0))
A(q2(a(z0))) → c5(A(z0))
A(q2(y(z0))) → c6(Y(z0))
Y(q2(a(z0))) → c8(A(z0))
Y(q2(y(z0))) → c9(Y(z0))
K tuples:
Q0(y(z0)) → c1(Y(q3(z0)), Q3(z0))
Q2(x(z0)) → c10(Q0(z0))
Q0(a(z0)) → c(Q1(z0))
Defined Rule Symbols:
q0, q1, a, y, q2, q3
Defined Pair Symbols:
Q0, Q1, A, Y, Q2, Q3
Compound Symbols:
c, c1, c2, c3, c4, c7, c10, c11, c5, c6, c8, c9
(11) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
A(q1(b(z0))) → c4(Q2(a(y(z0))), A(y(z0)), Y(z0))
We considered the (Usable) Rules:
q3(y(z0)) → y(q3(z0))
q3(bl(z0)) → bl(q4(z0))
y(q1(b(z0))) → q2(y(y(z0)))
y(q2(a(z0))) → q2(y(a(z0)))
y(q2(y(z0))) → q2(y(y(z0)))
q2(x(z0)) → x(q0(z0))
q0(a(z0)) → x(q1(z0))
q0(y(z0)) → y(q3(z0))
q1(a(z0)) → a(q1(z0))
q1(y(z0)) → y(q1(z0))
a(q1(b(z0))) → q2(a(y(z0)))
a(q2(a(z0))) → q2(a(a(z0)))
a(q2(y(z0))) → q2(a(y(z0)))
And the Tuples:
Q0(a(z0)) → c(Q1(z0))
Q0(y(z0)) → c1(Y(q3(z0)), Q3(z0))
Q1(a(z0)) → c2(A(q1(z0)), Q1(z0))
Q1(y(z0)) → c3(Y(q1(z0)), Q1(z0))
A(q1(b(z0))) → c4(Q2(a(y(z0))), A(y(z0)), Y(z0))
Y(q1(b(z0))) → c7(Q2(y(y(z0))), Y(y(z0)), Y(z0))
Q2(x(z0)) → c10(Q0(z0))
Q3(y(z0)) → c11(Y(q3(z0)), Q3(z0))
A(q2(a(z0))) → c5(A(z0))
A(q2(y(z0))) → c6(Y(z0))
Y(q2(a(z0))) → c8(A(z0))
Y(q2(y(z0))) → c9(Y(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(A(x1)) = [2]x12
POL(Q0(x1)) = [2] + x1
POL(Q1(x1)) = [3] + [2]x12
POL(Q2(x1)) = [1] + x1
POL(Q3(x1)) = [2] + x1
POL(Y(x1)) = [2] + [2]x1
POL(a(x1)) = [2] + [3]x1 + [2]x12
POL(b(x1)) = [3] + x1
POL(bl(x1)) = [2]
POL(c(x1)) = x1
POL(c1(x1, x2)) = x1 + x2
POL(c10(x1)) = x1
POL(c11(x1, x2)) = x1 + x2
POL(c2(x1, x2)) = x1 + x2
POL(c3(x1, x2)) = x1 + x2
POL(c4(x1, x2, x3)) = x1 + x2 + x3
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(c7(x1, x2, x3)) = x1 + x2 + x3
POL(c8(x1)) = x1
POL(c9(x1)) = x1
POL(q0(x1)) = [2] + [2]x1
POL(q1(x1)) = [3]x1 + x12
POL(q2(x1)) = [1] + [2]x1
POL(q3(x1)) = x1
POL(q4(x1)) = 0
POL(x(x1)) = [3] + x1
POL(y(x1)) = [2] + [3]x1
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
q0(a(z0)) → x(q1(z0))
q0(y(z0)) → y(q3(z0))
q1(a(z0)) → a(q1(z0))
q1(y(z0)) → y(q1(z0))
a(q1(b(z0))) → q2(a(y(z0)))
a(q2(a(z0))) → q2(a(a(z0)))
a(q2(y(z0))) → q2(a(y(z0)))
y(q1(b(z0))) → q2(y(y(z0)))
y(q2(a(z0))) → q2(y(a(z0)))
y(q2(y(z0))) → q2(y(y(z0)))
q2(x(z0)) → x(q0(z0))
q3(y(z0)) → y(q3(z0))
q3(bl(z0)) → bl(q4(z0))
Tuples:
Q0(a(z0)) → c(Q1(z0))
Q0(y(z0)) → c1(Y(q3(z0)), Q3(z0))
Q1(a(z0)) → c2(A(q1(z0)), Q1(z0))
Q1(y(z0)) → c3(Y(q1(z0)), Q1(z0))
A(q1(b(z0))) → c4(Q2(a(y(z0))), A(y(z0)), Y(z0))
Y(q1(b(z0))) → c7(Q2(y(y(z0))), Y(y(z0)), Y(z0))
Q2(x(z0)) → c10(Q0(z0))
Q3(y(z0)) → c11(Y(q3(z0)), Q3(z0))
A(q2(a(z0))) → c5(A(z0))
A(q2(y(z0))) → c6(Y(z0))
Y(q2(a(z0))) → c8(A(z0))
Y(q2(y(z0))) → c9(Y(z0))
S tuples:
Q1(a(z0)) → c2(A(q1(z0)), Q1(z0))
Q1(y(z0)) → c3(Y(q1(z0)), Q1(z0))
Y(q1(b(z0))) → c7(Q2(y(y(z0))), Y(y(z0)), Y(z0))
Q3(y(z0)) → c11(Y(q3(z0)), Q3(z0))
A(q2(a(z0))) → c5(A(z0))
A(q2(y(z0))) → c6(Y(z0))
Y(q2(a(z0))) → c8(A(z0))
Y(q2(y(z0))) → c9(Y(z0))
K tuples:
Q0(y(z0)) → c1(Y(q3(z0)), Q3(z0))
Q2(x(z0)) → c10(Q0(z0))
Q0(a(z0)) → c(Q1(z0))
A(q1(b(z0))) → c4(Q2(a(y(z0))), A(y(z0)), Y(z0))
Defined Rule Symbols:
q0, q1, a, y, q2, q3
Defined Pair Symbols:
Q0, Q1, A, Y, Q2, Q3
Compound Symbols:
c, c1, c2, c3, c4, c7, c10, c11, c5, c6, c8, c9
(13) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
Q1(y(z0)) → c3(Y(q1(z0)), Q1(z0))
We considered the (Usable) Rules:
q3(y(z0)) → y(q3(z0))
q3(bl(z0)) → bl(q4(z0))
y(q1(b(z0))) → q2(y(y(z0)))
y(q2(a(z0))) → q2(y(a(z0)))
y(q2(y(z0))) → q2(y(y(z0)))
q2(x(z0)) → x(q0(z0))
q0(a(z0)) → x(q1(z0))
q0(y(z0)) → y(q3(z0))
q1(a(z0)) → a(q1(z0))
q1(y(z0)) → y(q1(z0))
a(q1(b(z0))) → q2(a(y(z0)))
a(q2(a(z0))) → q2(a(a(z0)))
a(q2(y(z0))) → q2(a(y(z0)))
And the Tuples:
Q0(a(z0)) → c(Q1(z0))
Q0(y(z0)) → c1(Y(q3(z0)), Q3(z0))
Q1(a(z0)) → c2(A(q1(z0)), Q1(z0))
Q1(y(z0)) → c3(Y(q1(z0)), Q1(z0))
A(q1(b(z0))) → c4(Q2(a(y(z0))), A(y(z0)), Y(z0))
Y(q1(b(z0))) → c7(Q2(y(y(z0))), Y(y(z0)), Y(z0))
Q2(x(z0)) → c10(Q0(z0))
Q3(y(z0)) → c11(Y(q3(z0)), Q3(z0))
A(q2(a(z0))) → c5(A(z0))
A(q2(y(z0))) → c6(Y(z0))
Y(q2(a(z0))) → c8(A(z0))
Y(q2(y(z0))) → c9(Y(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(A(x1)) = x12
POL(Q0(x1)) = x1
POL(Q1(x1)) = [2]x12
POL(Q2(x1)) = [2]x1
POL(Q3(x1)) = x1
POL(Y(x1)) = x1
POL(a(x1)) = [3]x1 + [2]x12
POL(b(x1)) = [2] + x1
POL(bl(x1)) = 0
POL(c(x1)) = x1
POL(c1(x1, x2)) = x1 + x2
POL(c10(x1)) = x1
POL(c11(x1, x2)) = x1 + x2
POL(c2(x1, x2)) = x1 + x2
POL(c3(x1, x2)) = x1 + x2
POL(c4(x1, x2, x3)) = x1 + x2 + x3
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(c7(x1, x2, x3)) = x1 + x2 + x3
POL(c8(x1)) = x1
POL(c9(x1)) = x1
POL(q0(x1)) = x1
POL(q1(x1)) = [3]x1 + [2]x12
POL(q2(x1)) = x1
POL(q3(x1)) = x1
POL(q4(x1)) = 0
POL(x(x1)) = x1
POL(y(x1)) = [2] + [2]x1
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
q0(a(z0)) → x(q1(z0))
q0(y(z0)) → y(q3(z0))
q1(a(z0)) → a(q1(z0))
q1(y(z0)) → y(q1(z0))
a(q1(b(z0))) → q2(a(y(z0)))
a(q2(a(z0))) → q2(a(a(z0)))
a(q2(y(z0))) → q2(a(y(z0)))
y(q1(b(z0))) → q2(y(y(z0)))
y(q2(a(z0))) → q2(y(a(z0)))
y(q2(y(z0))) → q2(y(y(z0)))
q2(x(z0)) → x(q0(z0))
q3(y(z0)) → y(q3(z0))
q3(bl(z0)) → bl(q4(z0))
Tuples:
Q0(a(z0)) → c(Q1(z0))
Q0(y(z0)) → c1(Y(q3(z0)), Q3(z0))
Q1(a(z0)) → c2(A(q1(z0)), Q1(z0))
Q1(y(z0)) → c3(Y(q1(z0)), Q1(z0))
A(q1(b(z0))) → c4(Q2(a(y(z0))), A(y(z0)), Y(z0))
Y(q1(b(z0))) → c7(Q2(y(y(z0))), Y(y(z0)), Y(z0))
Q2(x(z0)) → c10(Q0(z0))
Q3(y(z0)) → c11(Y(q3(z0)), Q3(z0))
A(q2(a(z0))) → c5(A(z0))
A(q2(y(z0))) → c6(Y(z0))
Y(q2(a(z0))) → c8(A(z0))
Y(q2(y(z0))) → c9(Y(z0))
S tuples:
Q1(a(z0)) → c2(A(q1(z0)), Q1(z0))
Y(q1(b(z0))) → c7(Q2(y(y(z0))), Y(y(z0)), Y(z0))
Q3(y(z0)) → c11(Y(q3(z0)), Q3(z0))
A(q2(a(z0))) → c5(A(z0))
A(q2(y(z0))) → c6(Y(z0))
Y(q2(a(z0))) → c8(A(z0))
Y(q2(y(z0))) → c9(Y(z0))
K tuples:
Q0(y(z0)) → c1(Y(q3(z0)), Q3(z0))
Q2(x(z0)) → c10(Q0(z0))
Q0(a(z0)) → c(Q1(z0))
A(q1(b(z0))) → c4(Q2(a(y(z0))), A(y(z0)), Y(z0))
Q1(y(z0)) → c3(Y(q1(z0)), Q1(z0))
Defined Rule Symbols:
q0, q1, a, y, q2, q3
Defined Pair Symbols:
Q0, Q1, A, Y, Q2, Q3
Compound Symbols:
c, c1, c2, c3, c4, c7, c10, c11, c5, c6, c8, c9
(15) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
A(q2(y(z0))) → c6(Y(z0))
Y(q2(a(z0))) → c8(A(z0))
We considered the (Usable) Rules:
q3(y(z0)) → y(q3(z0))
q3(bl(z0)) → bl(q4(z0))
y(q1(b(z0))) → q2(y(y(z0)))
y(q2(a(z0))) → q2(y(a(z0)))
y(q2(y(z0))) → q2(y(y(z0)))
q2(x(z0)) → x(q0(z0))
q0(a(z0)) → x(q1(z0))
q0(y(z0)) → y(q3(z0))
q1(a(z0)) → a(q1(z0))
q1(y(z0)) → y(q1(z0))
a(q1(b(z0))) → q2(a(y(z0)))
a(q2(a(z0))) → q2(a(a(z0)))
a(q2(y(z0))) → q2(a(y(z0)))
And the Tuples:
Q0(a(z0)) → c(Q1(z0))
Q0(y(z0)) → c1(Y(q3(z0)), Q3(z0))
Q1(a(z0)) → c2(A(q1(z0)), Q1(z0))
Q1(y(z0)) → c3(Y(q1(z0)), Q1(z0))
A(q1(b(z0))) → c4(Q2(a(y(z0))), A(y(z0)), Y(z0))
Y(q1(b(z0))) → c7(Q2(y(y(z0))), Y(y(z0)), Y(z0))
Q2(x(z0)) → c10(Q0(z0))
Q3(y(z0)) → c11(Y(q3(z0)), Q3(z0))
A(q2(a(z0))) → c5(A(z0))
A(q2(y(z0))) → c6(Y(z0))
Y(q2(a(z0))) → c8(A(z0))
Y(q2(y(z0))) → c9(Y(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(A(x1)) = x12
POL(Q0(x1)) = x1
POL(Q1(x1)) = [2]x1 + x12
POL(Q2(x1)) = x1
POL(Q3(x1)) = 0
POL(Y(x1)) = x1
POL(a(x1)) = [2]x1 + x12
POL(b(x1)) = [3] + x1
POL(bl(x1)) = 0
POL(c(x1)) = x1
POL(c1(x1, x2)) = x1 + x2
POL(c10(x1)) = x1
POL(c11(x1, x2)) = x1 + x2
POL(c2(x1, x2)) = x1 + x2
POL(c3(x1, x2)) = x1 + x2
POL(c4(x1, x2, x3)) = x1 + x2 + x3
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(c7(x1, x2, x3)) = x1 + x2 + x3
POL(c8(x1)) = x1
POL(c9(x1)) = x1
POL(q0(x1)) = [2] + [2]x1
POL(q1(x1)) = x1 + x12
POL(q2(x1)) = [2] + [2]x1
POL(q3(x1)) = 0
POL(q4(x1)) = 0
POL(x(x1)) = x1
POL(y(x1)) = [2]x1
(16) Obligation:
Complexity Dependency Tuples Problem
Rules:
q0(a(z0)) → x(q1(z0))
q0(y(z0)) → y(q3(z0))
q1(a(z0)) → a(q1(z0))
q1(y(z0)) → y(q1(z0))
a(q1(b(z0))) → q2(a(y(z0)))
a(q2(a(z0))) → q2(a(a(z0)))
a(q2(y(z0))) → q2(a(y(z0)))
y(q1(b(z0))) → q2(y(y(z0)))
y(q2(a(z0))) → q2(y(a(z0)))
y(q2(y(z0))) → q2(y(y(z0)))
q2(x(z0)) → x(q0(z0))
q3(y(z0)) → y(q3(z0))
q3(bl(z0)) → bl(q4(z0))
Tuples:
Q0(a(z0)) → c(Q1(z0))
Q0(y(z0)) → c1(Y(q3(z0)), Q3(z0))
Q1(a(z0)) → c2(A(q1(z0)), Q1(z0))
Q1(y(z0)) → c3(Y(q1(z0)), Q1(z0))
A(q1(b(z0))) → c4(Q2(a(y(z0))), A(y(z0)), Y(z0))
Y(q1(b(z0))) → c7(Q2(y(y(z0))), Y(y(z0)), Y(z0))
Q2(x(z0)) → c10(Q0(z0))
Q3(y(z0)) → c11(Y(q3(z0)), Q3(z0))
A(q2(a(z0))) → c5(A(z0))
A(q2(y(z0))) → c6(Y(z0))
Y(q2(a(z0))) → c8(A(z0))
Y(q2(y(z0))) → c9(Y(z0))
S tuples:
Q1(a(z0)) → c2(A(q1(z0)), Q1(z0))
Y(q1(b(z0))) → c7(Q2(y(y(z0))), Y(y(z0)), Y(z0))
Q3(y(z0)) → c11(Y(q3(z0)), Q3(z0))
A(q2(a(z0))) → c5(A(z0))
Y(q2(y(z0))) → c9(Y(z0))
K tuples:
Q0(y(z0)) → c1(Y(q3(z0)), Q3(z0))
Q2(x(z0)) → c10(Q0(z0))
Q0(a(z0)) → c(Q1(z0))
A(q1(b(z0))) → c4(Q2(a(y(z0))), A(y(z0)), Y(z0))
Q1(y(z0)) → c3(Y(q1(z0)), Q1(z0))
A(q2(y(z0))) → c6(Y(z0))
Y(q2(a(z0))) → c8(A(z0))
Defined Rule Symbols:
q0, q1, a, y, q2, q3
Defined Pair Symbols:
Q0, Q1, A, Y, Q2, Q3
Compound Symbols:
c, c1, c2, c3, c4, c7, c10, c11, c5, c6, c8, c9
(17) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
Q1(a(z0)) → c2(A(q1(z0)), Q1(z0))
We considered the (Usable) Rules:
q3(y(z0)) → y(q3(z0))
q3(bl(z0)) → bl(q4(z0))
y(q1(b(z0))) → q2(y(y(z0)))
y(q2(a(z0))) → q2(y(a(z0)))
y(q2(y(z0))) → q2(y(y(z0)))
q2(x(z0)) → x(q0(z0))
q0(a(z0)) → x(q1(z0))
q0(y(z0)) → y(q3(z0))
q1(a(z0)) → a(q1(z0))
q1(y(z0)) → y(q1(z0))
a(q1(b(z0))) → q2(a(y(z0)))
a(q2(a(z0))) → q2(a(a(z0)))
a(q2(y(z0))) → q2(a(y(z0)))
And the Tuples:
Q0(a(z0)) → c(Q1(z0))
Q0(y(z0)) → c1(Y(q3(z0)), Q3(z0))
Q1(a(z0)) → c2(A(q1(z0)), Q1(z0))
Q1(y(z0)) → c3(Y(q1(z0)), Q1(z0))
A(q1(b(z0))) → c4(Q2(a(y(z0))), A(y(z0)), Y(z0))
Y(q1(b(z0))) → c7(Q2(y(y(z0))), Y(y(z0)), Y(z0))
Q2(x(z0)) → c10(Q0(z0))
Q3(y(z0)) → c11(Y(q3(z0)), Q3(z0))
A(q2(a(z0))) → c5(A(z0))
A(q2(y(z0))) → c6(Y(z0))
Y(q2(a(z0))) → c8(A(z0))
Y(q2(y(z0))) → c9(Y(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(A(x1)) = [1] + x12
POL(Q0(x1)) = [2] + x1
POL(Q1(x1)) = [3] + [2]x12
POL(Q2(x1)) = [2]x1
POL(Q3(x1)) = [1]
POL(Y(x1)) = [2]x1
POL(a(x1)) = [2] + [2]x12
POL(b(x1)) = [2] + x1
POL(bl(x1)) = 0
POL(c(x1)) = x1
POL(c1(x1, x2)) = x1 + x2
POL(c10(x1)) = x1
POL(c11(x1, x2)) = x1 + x2
POL(c2(x1, x2)) = x1 + x2
POL(c3(x1, x2)) = x1 + x2
POL(c4(x1, x2, x3)) = x1 + x2 + x3
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(c7(x1, x2, x3)) = x1 + x2 + x3
POL(c8(x1)) = x1
POL(c9(x1)) = x1
POL(q0(x1)) = [3] + x1
POL(q1(x1)) = [2]x12
POL(q2(x1)) = [2] + [2]x1
POL(q3(x1)) = 0
POL(q4(x1)) = 0
POL(x(x1)) = [3] + x1
POL(y(x1)) = [2]x1
(18) Obligation:
Complexity Dependency Tuples Problem
Rules:
q0(a(z0)) → x(q1(z0))
q0(y(z0)) → y(q3(z0))
q1(a(z0)) → a(q1(z0))
q1(y(z0)) → y(q1(z0))
a(q1(b(z0))) → q2(a(y(z0)))
a(q2(a(z0))) → q2(a(a(z0)))
a(q2(y(z0))) → q2(a(y(z0)))
y(q1(b(z0))) → q2(y(y(z0)))
y(q2(a(z0))) → q2(y(a(z0)))
y(q2(y(z0))) → q2(y(y(z0)))
q2(x(z0)) → x(q0(z0))
q3(y(z0)) → y(q3(z0))
q3(bl(z0)) → bl(q4(z0))
Tuples:
Q0(a(z0)) → c(Q1(z0))
Q0(y(z0)) → c1(Y(q3(z0)), Q3(z0))
Q1(a(z0)) → c2(A(q1(z0)), Q1(z0))
Q1(y(z0)) → c3(Y(q1(z0)), Q1(z0))
A(q1(b(z0))) → c4(Q2(a(y(z0))), A(y(z0)), Y(z0))
Y(q1(b(z0))) → c7(Q2(y(y(z0))), Y(y(z0)), Y(z0))
Q2(x(z0)) → c10(Q0(z0))
Q3(y(z0)) → c11(Y(q3(z0)), Q3(z0))
A(q2(a(z0))) → c5(A(z0))
A(q2(y(z0))) → c6(Y(z0))
Y(q2(a(z0))) → c8(A(z0))
Y(q2(y(z0))) → c9(Y(z0))
S tuples:
Y(q1(b(z0))) → c7(Q2(y(y(z0))), Y(y(z0)), Y(z0))
Q3(y(z0)) → c11(Y(q3(z0)), Q3(z0))
A(q2(a(z0))) → c5(A(z0))
Y(q2(y(z0))) → c9(Y(z0))
K tuples:
Q0(y(z0)) → c1(Y(q3(z0)), Q3(z0))
Q2(x(z0)) → c10(Q0(z0))
Q0(a(z0)) → c(Q1(z0))
A(q1(b(z0))) → c4(Q2(a(y(z0))), A(y(z0)), Y(z0))
Q1(y(z0)) → c3(Y(q1(z0)), Q1(z0))
A(q2(y(z0))) → c6(Y(z0))
Y(q2(a(z0))) → c8(A(z0))
Q1(a(z0)) → c2(A(q1(z0)), Q1(z0))
Defined Rule Symbols:
q0, q1, a, y, q2, q3
Defined Pair Symbols:
Q0, Q1, A, Y, Q2, Q3
Compound Symbols:
c, c1, c2, c3, c4, c7, c10, c11, c5, c6, c8, c9
(19) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
Y(q1(b(z0))) → c7(Q2(y(y(z0))), Y(y(z0)), Y(z0))
We considered the (Usable) Rules:
q3(y(z0)) → y(q3(z0))
q3(bl(z0)) → bl(q4(z0))
y(q1(b(z0))) → q2(y(y(z0)))
y(q2(a(z0))) → q2(y(a(z0)))
y(q2(y(z0))) → q2(y(y(z0)))
q2(x(z0)) → x(q0(z0))
q0(a(z0)) → x(q1(z0))
q0(y(z0)) → y(q3(z0))
q1(a(z0)) → a(q1(z0))
q1(y(z0)) → y(q1(z0))
a(q1(b(z0))) → q2(a(y(z0)))
a(q2(a(z0))) → q2(a(a(z0)))
a(q2(y(z0))) → q2(a(y(z0)))
And the Tuples:
Q0(a(z0)) → c(Q1(z0))
Q0(y(z0)) → c1(Y(q3(z0)), Q3(z0))
Q1(a(z0)) → c2(A(q1(z0)), Q1(z0))
Q1(y(z0)) → c3(Y(q1(z0)), Q1(z0))
A(q1(b(z0))) → c4(Q2(a(y(z0))), A(y(z0)), Y(z0))
Y(q1(b(z0))) → c7(Q2(y(y(z0))), Y(y(z0)), Y(z0))
Q2(x(z0)) → c10(Q0(z0))
Q3(y(z0)) → c11(Y(q3(z0)), Q3(z0))
A(q2(a(z0))) → c5(A(z0))
A(q2(y(z0))) → c6(Y(z0))
Y(q2(a(z0))) → c8(A(z0))
Y(q2(y(z0))) → c9(Y(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(A(x1)) = x12
POL(Q0(x1)) = [3] + x1
POL(Q1(x1)) = [1] + [2]x12
POL(Q2(x1)) = [1] + [2]x1
POL(Q3(x1)) = 0
POL(Y(x1)) = [2]x1
POL(a(x1)) = [1] + [2]x12
POL(b(x1)) = [2] + x1
POL(bl(x1)) = 0
POL(c(x1)) = x1
POL(c1(x1, x2)) = x1 + x2
POL(c10(x1)) = x1
POL(c11(x1, x2)) = x1 + x2
POL(c2(x1, x2)) = x1 + x2
POL(c3(x1, x2)) = x1 + x2
POL(c4(x1, x2, x3)) = x1 + x2 + x3
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(c7(x1, x2, x3)) = x1 + x2 + x3
POL(c8(x1)) = x1
POL(c9(x1)) = x1
POL(q0(x1)) = [3] + x1
POL(q1(x1)) = [2]x12
POL(q2(x1)) = [1] + [2]x1
POL(q3(x1)) = 0
POL(q4(x1)) = 0
POL(x(x1)) = [3] + x1
POL(y(x1)) = [2]x1
(20) Obligation:
Complexity Dependency Tuples Problem
Rules:
q0(a(z0)) → x(q1(z0))
q0(y(z0)) → y(q3(z0))
q1(a(z0)) → a(q1(z0))
q1(y(z0)) → y(q1(z0))
a(q1(b(z0))) → q2(a(y(z0)))
a(q2(a(z0))) → q2(a(a(z0)))
a(q2(y(z0))) → q2(a(y(z0)))
y(q1(b(z0))) → q2(y(y(z0)))
y(q2(a(z0))) → q2(y(a(z0)))
y(q2(y(z0))) → q2(y(y(z0)))
q2(x(z0)) → x(q0(z0))
q3(y(z0)) → y(q3(z0))
q3(bl(z0)) → bl(q4(z0))
Tuples:
Q0(a(z0)) → c(Q1(z0))
Q0(y(z0)) → c1(Y(q3(z0)), Q3(z0))
Q1(a(z0)) → c2(A(q1(z0)), Q1(z0))
Q1(y(z0)) → c3(Y(q1(z0)), Q1(z0))
A(q1(b(z0))) → c4(Q2(a(y(z0))), A(y(z0)), Y(z0))
Y(q1(b(z0))) → c7(Q2(y(y(z0))), Y(y(z0)), Y(z0))
Q2(x(z0)) → c10(Q0(z0))
Q3(y(z0)) → c11(Y(q3(z0)), Q3(z0))
A(q2(a(z0))) → c5(A(z0))
A(q2(y(z0))) → c6(Y(z0))
Y(q2(a(z0))) → c8(A(z0))
Y(q2(y(z0))) → c9(Y(z0))
S tuples:
Q3(y(z0)) → c11(Y(q3(z0)), Q3(z0))
A(q2(a(z0))) → c5(A(z0))
Y(q2(y(z0))) → c9(Y(z0))
K tuples:
Q0(y(z0)) → c1(Y(q3(z0)), Q3(z0))
Q2(x(z0)) → c10(Q0(z0))
Q0(a(z0)) → c(Q1(z0))
A(q1(b(z0))) → c4(Q2(a(y(z0))), A(y(z0)), Y(z0))
Q1(y(z0)) → c3(Y(q1(z0)), Q1(z0))
A(q2(y(z0))) → c6(Y(z0))
Y(q2(a(z0))) → c8(A(z0))
Q1(a(z0)) → c2(A(q1(z0)), Q1(z0))
Y(q1(b(z0))) → c7(Q2(y(y(z0))), Y(y(z0)), Y(z0))
Defined Rule Symbols:
q0, q1, a, y, q2, q3
Defined Pair Symbols:
Q0, Q1, A, Y, Q2, Q3
Compound Symbols:
c, c1, c2, c3, c4, c7, c10, c11, c5, c6, c8, c9
(21) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
A(q2(a(z0))) → c5(A(z0))
Y(q2(y(z0))) → c9(Y(z0))
We considered the (Usable) Rules:
q3(y(z0)) → y(q3(z0))
q3(bl(z0)) → bl(q4(z0))
y(q1(b(z0))) → q2(y(y(z0)))
y(q2(a(z0))) → q2(y(a(z0)))
y(q2(y(z0))) → q2(y(y(z0)))
q2(x(z0)) → x(q0(z0))
q0(a(z0)) → x(q1(z0))
q0(y(z0)) → y(q3(z0))
q1(a(z0)) → a(q1(z0))
q1(y(z0)) → y(q1(z0))
a(q1(b(z0))) → q2(a(y(z0)))
a(q2(a(z0))) → q2(a(a(z0)))
a(q2(y(z0))) → q2(a(y(z0)))
And the Tuples:
Q0(a(z0)) → c(Q1(z0))
Q0(y(z0)) → c1(Y(q3(z0)), Q3(z0))
Q1(a(z0)) → c2(A(q1(z0)), Q1(z0))
Q1(y(z0)) → c3(Y(q1(z0)), Q1(z0))
A(q1(b(z0))) → c4(Q2(a(y(z0))), A(y(z0)), Y(z0))
Y(q1(b(z0))) → c7(Q2(y(y(z0))), Y(y(z0)), Y(z0))
Q2(x(z0)) → c10(Q0(z0))
Q3(y(z0)) → c11(Y(q3(z0)), Q3(z0))
A(q2(a(z0))) → c5(A(z0))
A(q2(y(z0))) → c6(Y(z0))
Y(q2(a(z0))) → c8(A(z0))
Y(q2(y(z0))) → c9(Y(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(A(x1)) = x12
POL(Q0(x1)) = [1] + [2]x1
POL(Q1(x1)) = x1 + x12
POL(Q2(x1)) = [2] + [2]x1
POL(Q3(x1)) = 0
POL(Y(x1)) = x1
POL(a(x1)) = [2]x1 + [2]x12
POL(b(x1)) = [3] + x1
POL(bl(x1)) = 0
POL(c(x1)) = x1
POL(c1(x1, x2)) = x1 + x2
POL(c10(x1)) = x1
POL(c11(x1, x2)) = x1 + x2
POL(c2(x1, x2)) = x1 + x2
POL(c3(x1, x2)) = x1 + x2
POL(c4(x1, x2, x3)) = x1 + x2 + x3
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(c7(x1, x2, x3)) = x1 + x2 + x3
POL(c8(x1)) = x1
POL(c9(x1)) = x1
POL(q0(x1)) = [1] + x1
POL(q1(x1)) = x1 + [2]x12
POL(q2(x1)) = [1] + [2]x1
POL(q3(x1)) = 0
POL(q4(x1)) = 0
POL(x(x1)) = [1] + x1
POL(y(x1)) = [2]x1
(22) Obligation:
Complexity Dependency Tuples Problem
Rules:
q0(a(z0)) → x(q1(z0))
q0(y(z0)) → y(q3(z0))
q1(a(z0)) → a(q1(z0))
q1(y(z0)) → y(q1(z0))
a(q1(b(z0))) → q2(a(y(z0)))
a(q2(a(z0))) → q2(a(a(z0)))
a(q2(y(z0))) → q2(a(y(z0)))
y(q1(b(z0))) → q2(y(y(z0)))
y(q2(a(z0))) → q2(y(a(z0)))
y(q2(y(z0))) → q2(y(y(z0)))
q2(x(z0)) → x(q0(z0))
q3(y(z0)) → y(q3(z0))
q3(bl(z0)) → bl(q4(z0))
Tuples:
Q0(a(z0)) → c(Q1(z0))
Q0(y(z0)) → c1(Y(q3(z0)), Q3(z0))
Q1(a(z0)) → c2(A(q1(z0)), Q1(z0))
Q1(y(z0)) → c3(Y(q1(z0)), Q1(z0))
A(q1(b(z0))) → c4(Q2(a(y(z0))), A(y(z0)), Y(z0))
Y(q1(b(z0))) → c7(Q2(y(y(z0))), Y(y(z0)), Y(z0))
Q2(x(z0)) → c10(Q0(z0))
Q3(y(z0)) → c11(Y(q3(z0)), Q3(z0))
A(q2(a(z0))) → c5(A(z0))
A(q2(y(z0))) → c6(Y(z0))
Y(q2(a(z0))) → c8(A(z0))
Y(q2(y(z0))) → c9(Y(z0))
S tuples:
Q3(y(z0)) → c11(Y(q3(z0)), Q3(z0))
K tuples:
Q0(y(z0)) → c1(Y(q3(z0)), Q3(z0))
Q2(x(z0)) → c10(Q0(z0))
Q0(a(z0)) → c(Q1(z0))
A(q1(b(z0))) → c4(Q2(a(y(z0))), A(y(z0)), Y(z0))
Q1(y(z0)) → c3(Y(q1(z0)), Q1(z0))
A(q2(y(z0))) → c6(Y(z0))
Y(q2(a(z0))) → c8(A(z0))
Q1(a(z0)) → c2(A(q1(z0)), Q1(z0))
Y(q1(b(z0))) → c7(Q2(y(y(z0))), Y(y(z0)), Y(z0))
A(q2(a(z0))) → c5(A(z0))
Y(q2(y(z0))) → c9(Y(z0))
Defined Rule Symbols:
q0, q1, a, y, q2, q3
Defined Pair Symbols:
Q0, Q1, A, Y, Q2, Q3
Compound Symbols:
c, c1, c2, c3, c4, c7, c10, c11, c5, c6, c8, c9
(23) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
Q3(y(z0)) → c11(Y(q3(z0)), Q3(z0))
We considered the (Usable) Rules:
q3(y(z0)) → y(q3(z0))
q3(bl(z0)) → bl(q4(z0))
y(q1(b(z0))) → q2(y(y(z0)))
y(q2(a(z0))) → q2(y(a(z0)))
y(q2(y(z0))) → q2(y(y(z0)))
q2(x(z0)) → x(q0(z0))
q0(a(z0)) → x(q1(z0))
q0(y(z0)) → y(q3(z0))
q1(a(z0)) → a(q1(z0))
q1(y(z0)) → y(q1(z0))
a(q1(b(z0))) → q2(a(y(z0)))
a(q2(a(z0))) → q2(a(a(z0)))
a(q2(y(z0))) → q2(a(y(z0)))
And the Tuples:
Q0(a(z0)) → c(Q1(z0))
Q0(y(z0)) → c1(Y(q3(z0)), Q3(z0))
Q1(a(z0)) → c2(A(q1(z0)), Q1(z0))
Q1(y(z0)) → c3(Y(q1(z0)), Q1(z0))
A(q1(b(z0))) → c4(Q2(a(y(z0))), A(y(z0)), Y(z0))
Y(q1(b(z0))) → c7(Q2(y(y(z0))), Y(y(z0)), Y(z0))
Q2(x(z0)) → c10(Q0(z0))
Q3(y(z0)) → c11(Y(q3(z0)), Q3(z0))
A(q2(a(z0))) → c5(A(z0))
A(q2(y(z0))) → c6(Y(z0))
Y(q2(a(z0))) → c8(A(z0))
Y(q2(y(z0))) → c9(Y(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(A(x1)) = [3] + x12
POL(Q0(x1)) = [1] + x1
POL(Q1(x1)) = [3] + x12
POL(Q2(x1)) = [2] + x1
POL(Q3(x1)) = [3] + x1
POL(Y(x1)) = x1
POL(a(x1)) = [3] + [3]x1 + [2]x12
POL(b(x1)) = [2] + x1
POL(bl(x1)) = 0
POL(c(x1)) = x1
POL(c1(x1, x2)) = x1 + x2
POL(c10(x1)) = x1
POL(c11(x1, x2)) = x1 + x2
POL(c2(x1, x2)) = x1 + x2
POL(c3(x1, x2)) = x1 + x2
POL(c4(x1, x2, x3)) = x1 + x2 + x3
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(c7(x1, x2, x3)) = x1 + x2 + x3
POL(c8(x1)) = x1
POL(c9(x1)) = x1
POL(q0(x1)) = [1] + [2]x1
POL(q1(x1)) = [3]x1 + x12
POL(q2(x1)) = [2] + [2]x1
POL(q3(x1)) = x1
POL(q4(x1)) = 0
POL(x(x1)) = x1
POL(y(x1)) = [2] + [2]x1
(24) Obligation:
Complexity Dependency Tuples Problem
Rules:
q0(a(z0)) → x(q1(z0))
q0(y(z0)) → y(q3(z0))
q1(a(z0)) → a(q1(z0))
q1(y(z0)) → y(q1(z0))
a(q1(b(z0))) → q2(a(y(z0)))
a(q2(a(z0))) → q2(a(a(z0)))
a(q2(y(z0))) → q2(a(y(z0)))
y(q1(b(z0))) → q2(y(y(z0)))
y(q2(a(z0))) → q2(y(a(z0)))
y(q2(y(z0))) → q2(y(y(z0)))
q2(x(z0)) → x(q0(z0))
q3(y(z0)) → y(q3(z0))
q3(bl(z0)) → bl(q4(z0))
Tuples:
Q0(a(z0)) → c(Q1(z0))
Q0(y(z0)) → c1(Y(q3(z0)), Q3(z0))
Q1(a(z0)) → c2(A(q1(z0)), Q1(z0))
Q1(y(z0)) → c3(Y(q1(z0)), Q1(z0))
A(q1(b(z0))) → c4(Q2(a(y(z0))), A(y(z0)), Y(z0))
Y(q1(b(z0))) → c7(Q2(y(y(z0))), Y(y(z0)), Y(z0))
Q2(x(z0)) → c10(Q0(z0))
Q3(y(z0)) → c11(Y(q3(z0)), Q3(z0))
A(q2(a(z0))) → c5(A(z0))
A(q2(y(z0))) → c6(Y(z0))
Y(q2(a(z0))) → c8(A(z0))
Y(q2(y(z0))) → c9(Y(z0))
S tuples:none
K tuples:
Q0(y(z0)) → c1(Y(q3(z0)), Q3(z0))
Q2(x(z0)) → c10(Q0(z0))
Q0(a(z0)) → c(Q1(z0))
A(q1(b(z0))) → c4(Q2(a(y(z0))), A(y(z0)), Y(z0))
Q1(y(z0)) → c3(Y(q1(z0)), Q1(z0))
A(q2(y(z0))) → c6(Y(z0))
Y(q2(a(z0))) → c8(A(z0))
Q1(a(z0)) → c2(A(q1(z0)), Q1(z0))
Y(q1(b(z0))) → c7(Q2(y(y(z0))), Y(y(z0)), Y(z0))
A(q2(a(z0))) → c5(A(z0))
Y(q2(y(z0))) → c9(Y(z0))
Q3(y(z0)) → c11(Y(q3(z0)), Q3(z0))
Defined Rule Symbols:
q0, q1, a, y, q2, q3
Defined Pair Symbols:
Q0, Q1, A, Y, Q2, Q3
Compound Symbols:
c, c1, c2, c3, c4, c7, c10, c11, c5, c6, c8, c9
(25) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(26) BOUNDS(O(1), O(1))